skip to main content


Search for: All records

Creators/Authors contains: "Moffat, Carlos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem-scale (eddy covariance) but fluxes from tidal creeks are unknown.

    This dataset includes GHG concentrations in water, water quality, meteorology, sediment CO2 efflux, ecosystem-scale GHG fluxes, and plant phenology; all at half-hour time-steps over one year.

    This study was carried out in the St. Jones Reserve, a component of the Delaware National Estuarine Research Reserve in Dover, Delaware, U.S.A. The study site is part of the following networks:

    - AmeriFlux (https://ameriflux.lbl.gov/sites/siteinfo/US-StJ)
    - Phenocam (https://phenocam.sr.unh.edu/webcam/sites/stjones/)

    The GHG concentration and efflux sampling point was located at Aspen Landing within a microtidal (mean tide range of 1.5 m), mesohaline (typical salinity of 5-18 ppt) salt marsh (Delaware Department of Natural Resources and Environmental Control, 2006) tidal creek.

    Main reference:

    Trifunovic, B., Vázquez‐Lule, A., Capooci, M., Seyfferth, A. L., Moffat, C., & Vargas, R. (2020). Carbon dioxide and methane emissions from a temperate salt marsh tidal creek. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005558. https://doi.org/ 10.1029/2019JG005558


     
    more » « less
  2. null (Ed.)
    The manuscript assesses the current and expected future global drivers of Southern Ocean (SO) ecosystems. Atmospheric ozone depletion over the Antarctic since the 1970s, has been a key driver, resulting in springtime cooling of the stratosphere and intensification of the polar vortex, increasing the frequency of positive phases of the Southern Annular Mode (SAM). This increases warm air-flow over the East Pacific sector (Western Antarctic Peninsula) and cold air flow over the West Pacific sector. SAM as well as El Niño Southern Oscillation events also affect the Amundsen Sea Low leading to either positive or negative sea ice anomalies in the west and east Pacific sectors, respectively. The strengthening of westerly winds is also linked to shoaling of deep warmer water onto the continental shelves, particularly in the East Pacific and Atlantic sectors. Air and ocean warming has led to changes in the cryosphere, with glacial and ice sheet melting in both sectors, opening up new ice free areas to biological productivity, but increasing seafloor disturbance by icebergs. The increased melting is correlated with a salinity decrease particularly in the surface 100 m. Such processes could increase the availability of iron, which is currently limiting primary production over much of the SO. Increasing CO 2 is one of the most important SO anthropogenic drivers and is likely to affect marine ecosystems in the coming decades. While levels of many pollutants are lower than elsewhere, persistent organic pollutants (POPs) and plastics have been detected in the SO, with concentrations likely enhanced by migratory species. With increased marine traffic and weakening of ocean barriers the risk of the establishment of non-indigenous species is increased. The continued recovery of the ozone hole creates uncertainty over the reversal in sea ice trends, especially in the light of the abrupt transition from record high to record low Antarctic sea ice extent since spring 2016. The current rate of change in physical and anthropogenic drivers is certain to impact the Marine Ecosystem Assessment of the Southern Ocean (MEASO) region in the near future and will have a wide range of impacts across the marine ecosystem. 
    more » « less
  3. Abstract

    The continental shelf of the West Antarctic Peninsula (WAP) is characterized by strong along‐shore hydrographic gradients resulting from the distinct influences of the warm Bellingshausen Sea to the south and the cold Weddell Sea water flooding Bransfield Strait to the north. These gradients modulate the spatial structure of glacier retreat and are correlated with other physical and biochemical variability along the shelf, but their structure and dynamics remain poorly understood. Here, the magnitude, spatial structure, seasonal‐to‐interannual variability, and driving mechanisms of along‐shore exchange are investigated using the output of a high‐resolution numerical model and with hydrographic data collected in Palmer Deep. The analyses reveal a pronounced seasonal cycle of along‐shore transport, with a net flux (7.0 × 105 m3/s) of cold water toward the central WAP (cWAP) in winter, which reverses in summer with a net flow (5.2 × 105 m3/s) of Circumpolar Deep Water (CDW) and modified CDW (mCDW) toward Bransfield Strait. Significant interannual variability is found as the pathway of a coastal current transporting Weddell‐sourced water along the WAP shelf is modulated by wind forcing. When the Southern Annual Mode (SAM) is positive during winter, stronger upwelling‐favorable winds dominate in Bransfield Strait, leading to offshore advection of the Weddell‐sourced water. Negative SAM leads to weaker upwelling‐ or downwelling‐favorable winds and enhanced flooding of the cWAP with cold water from Bransfield Strait. This process can result in significant (0.5°C below 200 m) cooling of the continental shelf around Palmer Station, highlighting that along‐shore exchange is critical in modulating the hydrographic properties along the WAP.

     
    more » « less
  4. Abstract

    Oceanic heat strongly influences the glaciers and ice shelves along West Antarctica. Prior studies show that the subsurface onshore heat flux from the Southern Ocean on the shelf occurs through deep, glacially carved channels. The mechanisms enabling the export of colder shelf waters to the open ocean, however, have not been determined. Here, we use ocean glider measurements collected near the mouth of Marguerite Trough (MT), west Antarctic Peninsula, to reveal shelf‐modified cold waters on the slope over a deep (2,700 m) offshore topographic bank. The shelf hydrographic sections show subsurface cold features (θ<=1.5 °C), and associated potential vorticity fields suggest a significant instability‐driven eddy field. Output from a high‐resolution numerical model reveals offshore export modulated by small (6 km), cold‐cored, cyclonic eddies preferentially generated along the slope and at the mouth of MT. While baroclinic and barotropic instabilities appear active in the surrounding open ocean, the former is suppressed along the steep shelf slopes, while the latter appears enhanced. Altimetry and model output reveal the mean slope flow splitting to form an offshore branch over the bank, which eventually forms a large (116 km wide) persistent lee eddy, and an onshore branch in MT. The offshore flow forms a pathway for the small cold‐cored eddies to move offshore, where they contribute significantly to cooling over the bank, including the large lee eddy. These results suggest eddy fluxes, and topographically modulated flows are key mechanisms for shelf water export along this shelf, just as they are for the shoreward warm water transport.

     
    more » « less
  5. Abstract

    Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.

     
    more » « less
  6. Abstract

    Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorological parameters, sediment CO2efflux, ecosystem‐scale GHG fluxes, and plant phenology; all at half‐hour intervals over 1 year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water‐to‐atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH4efflux. Despite lacking a seasonal pattern, creek CO2efflux was correlated with drivers such as turbidity across phenological phases. Overall, nighttime creek CO2efflux (3.6 ± 0.63 μmol/m2/s) was at least 2 times higher than nighttime marsh sediment CO2efflux (1.5 ± 1.23 μmol/m2/s). Creek CH4efflux (17.5 ± 6.9 nmol/m2/s) was 4 times lower than ecosystem‐scale CH4fluxes (68.1 ± 52.3 nmol/m2/s) across the year. These results suggest that tidal creeks are potential hotspots for CO2emissions and could contribute to lateral transport of CH4to the coastal ocean due to supersaturation of CH4(>6,000 μmol/mol) in water. This study provides insights for modeling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes.

     
    more » « less